
ogress Report Va	alue of the pro	ject	
environment for the fut	ure		
Saving landfillusage/cost	t		
Input waste material	Weight		Volume
Food waste	0.9 t/d		
		329 t/y	329 m3/y
Se wage sludge (TS2%) 1.4 t/d		
	511 t/y		
Se wage sludge (TS209	6)	51 t/y	46 m3/y
		380 t/y	375 m3/y
GHG reduction			
GHG reduction	GHG reduction		924 tCO2/y
Energy orlented CO2	Energy oriented CO2 reduction		108 tCO2/y
Saving imported chemica	al fertilizer		
Equal value of the liq	uid fertilizer		
N40%-P0-K0 Urea (N40%-PO-KO Urea (sold In Palau)		3.1 kg/t
N6%-P24%-K24% (N6%-P24%-K24% (sold In Palau)		3.4 kg/t
total	total		6.5 kg/t
Planned providing an	Planned providing amount of liquid fertilizer(15%)		164 t/y
	Total amout of substiting chemical fertilizer		1,059 kg/y
Total amout of substi	ting chemical fertilizer		I,ub9 kg/y

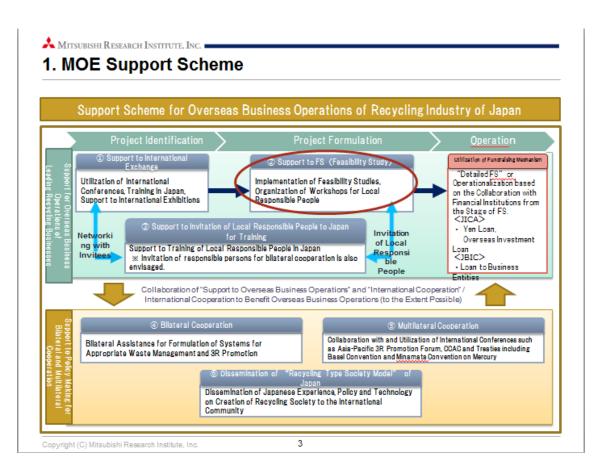
Challenge/Key Point for Success ☐ How to secure the input materials - Food waste · Plan/situation of promoting pig farming? . Collaborating with resort project >> raising bland value as eco-resort Sludge · Whether the planned amount is attractive for PPUC or not? – Other possibly source? · Septic tank sludge Shredded cardboard ☐ Improve the balance of the cost/benefit → Initial/O&M cost - ↑ Providing value (electricity, liquid fertilizer) □ Financing - Find other possible financing sources for the initial cost to be compensated ΔΙΙΙΙΔ

Improvement in Waste Management and Recycling

Cases in Asian Cities

February, 28th, 2017

Copyright (C) Mitsubishi Research Institute, Inc.



1. MOE Project and MRI

- MRI conducts a MOE project for improving waste management (WM) and recycling in Asia and Pacific Regions through introducing system and technology of Japanese WM and Recycling industry.
- Business Target
 - Waste collection and transport service
 - Recycling
 - Waste to Energy
 - Appropriate treatment of hazardous waste
- Supported projects since 2011
 - More than 70 projects

Copyright (C) Mitsubishi Research Institute, Inc.

2

2. Trend of Waste Management and Recycling in Asia Countries

- Closure of open dumping site
 - > Transition to the managed landfill site
 - > Promotion of appropriate treatment of hazardous waste
 - Promotion of recycling of municipal solid waste
 - Introduction of Waste to Energy

< Landfill site / Collection of hazardous waste in Philippines>

Photo by MRI

Copyright (C) Mitsubishi Research Institute, Inc.

4

2. Challenges of improvement of WM and Recycling in Asia Countries

- Legal system and governance
 - > Enforcement of legal systems
 - Awareness of citizens
- Technology
 - Appropriate treatment
 - Recycling
- Education
 - > Citizens for segregated collection
 - > Operators for efficient operating of facilities
- Financing
 - > Insufficient budget / tipping fees of local government
 - ✓ Still responsibility of local government in PPP cases...
 - > Small market for recycled products / recovered energy

3. Case of WtE facility in Myanmar

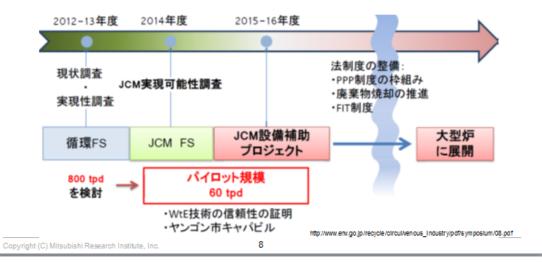
- WtE facility in surrounding of Yangon, a largest city in Myanmar
- Planning of facilities with 800t/d in feasibility study of JFE Engineering
- Financial analysis in the feasible study project
 - PPP : need high price for generated power, grant fund, subsidies
 - Independ management : difficult realize it
- Down sizing of capacity
 - Capacity 800/t day was financially difficult for Yangon City.
 - Capacity 60t/d would be feasible for Yangon City with subsidy of MOE-J.

http://www.jfe-eng.co.jp/en/news/2015/20151112.html

Copyright (C) Mitsubishi Research Institute, Inc.

6

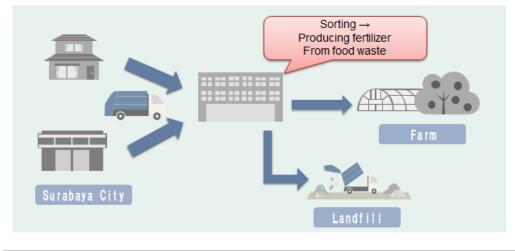
3. Case of WtE facility in Myanmar


Copyright (C) Mitsubishi Research Institute, Inc.

7

★ MITSUBISHI RESEARCH INSTITUTE, INC. ■

3. Case of WtE facility in Myanmar


- Starting from small size pilot WtE facility
 - Verify the WtE technology
 - Capacity building in Yangon City
- Developing to larger size facilities
 - Legal system (Incineration, PPP, FIT)

A MITSUBISHI RESEARCH INSTITUTE, INC.

4. Case of Sorting center in Indonesia

- Sorting facility center in Surabaya city in Indonesia
- Planning of introducing of recycling facilities
- Feasibility study of Nishihara Corporation found out needs for sorting center prior to recycling / landfilling

Copyright (C) Mitsubishi Research Institute, Inc.

9

4. Case of Sorting center in Indonesia

Copyright (C) Mitsubishi Research Institute, Inc.

10

5. Recommendations from cases in Asian Cities

- Starting from pilot / small
 - > Check the feasibility and applicability
 - > Understanding by stakeholders
 - > Step up to larger
- Showing the actual case
 - > How to do, What to do
 - Benefit and effectiveness
- Consider the way for sustainability
 - > Understanding for necessary cost
 - Increasing efficiency and value

Copyright (C) Mitsubishi Research Institute, Inc.