

NIPPON STEEL ENGINEERING'S Waste to Energy System Your most reliable partner for Waste to Energy

NIPPON STEEL ENGINEERING's State of the Art Combustion System

Stable and Thorough Combustion Sequence

- · From high to low calorific values, our system can treat a wide range of waste.
- Highly reliable because of its simple combustion control system, able to adapt to changes to waste properties.
- By creating efficient air cyclones in the secondary combustion zone, less air is required for full combustion.
- Currently holds the record for largest operating plant per line at 864t/d. Our maximum design capacity is at 1,200t/d, which is also the one of largest in the world.

High Energy Generation Efficiency

Various technologies (e.g. High steam condition boiler and regeneration / reheating cycle of steam) allow us to achieve higher power generation efficiency. **R**eference plants are as follows:

- Napoli Plant (based on initial conditions set by client) Steam Conditions : 500°C, 90 bar Generation Efficiency : 30.2% (Highest in the world)
- Rüdersdorf Plant
 Steam Conditions : 400°C, 90 bar
 Generation Efficiency : 29.9% (Uses Reheating Cycle)

Advanced Flue Gas Cleaning

- We comply with even stricter emission regulations than standard Japanese regulations.
- We provide various treatment methods that fit your flue gas cleaning needs.
- Dioxin is dealt with by destruction through complete combustion of flue gas and removal using activated carbon or further destruction with catalyst.

Easy Maintenance and Long Continuous Operation

- <Furnace> Minimize shutdown to prevent clinker blockage.
- <Grate> Minimize replacement needs by choosing optimum grate type (air or water cooled). Simple (bolts and nuts not required) structure allows easy maintenance .
- <Boiler> Maximize lifespan by optimizing temperature settings and equipment design/material.

References

Start of operation 2009 Waste RDF Calorific value 15MJ/kg(3,580kcal/kg) Capacity 658t/d × 3line Steam condition 90bar 500°C Amount generated 107MW

NIPPON STEEL ENGINEERING's Standard Spec

		•
Торіс	Standard Spec	Comments
Grate Combustion rate	250-360kg/m²h	Depends on waste. Able to conserve space.
Range of calorific value (LHV)	5.0 to 18.0 MJ/kg	Waste of lower and higher values (including RDF) is also acceptable
Acceptance size	Under 600mmX600mmX600mm	Lengths up to 1200mm also acceptable
Throughput Capability	50 to 1200t/d	Largest so far is 864t/d(largest in the world)
Flue gas cleaning method	Dry, Semi Dry, Wet	Depends on customer needs
Flue gas type (NOx)	Catalytic, Non-catalytic, Activated Carbon	Depends on customer needs
Start up time	Appx 8 hrs	
Shut down time	Appx 4 hrs	Emergency shutdown available
Energy generation efficiency (max)	26% (30.2%)	Max is world's best.
Availability	8,000hrs (10,000hrs)	7,200~8,000hrs is the global standard
Steam temperature	~400°C (500°C)	Designed based on LCC preference of custome
Fluctuation of Steam	Below 3%	Important factor for PPA
Utilities	Water, electricity, fuel	Fuel for start-up and shut down
Ignition Loss	Below 3%	Reference around 1~2%

Global Presence in WtE Business REFERENCE

Combustion: 60years, appx 500 Units= 150 thousand tpd Gasification: 40years, appx 80 Units= 10 thousand tpd

*Updated in Mar. 2019*Includes Licensed Projects.

Globally Proven Technology

References

Ruhleben, Germany

FLOW

- Platform
- 2 Waste Pit
- 8 Waste Crane
- 4 Waste Hopper
- 6 Waste Chute
- 6 Waste Feeder
- Stoker Furnace

The well designed [2 'Steps'] and [Declination Angle] of the furnace allows stable and thorough treatment of a wide range of waste.

8 Primary Air Fan

Waste is combusted with air fed into the furnace. The air is designed to also dry incoming waste and cool the grate .

Secondary Air Fan

A cyclone to effectively and thoroughly combust flue gas within the furnace is created with a low 'excess air ratio'

Slag extracter

Boiler

Steam generated with the heat from the combustion of waste. Corrosion of boiler tubes and build-up of clinkers and fouling are prevented through our technology and experience.

Secondary Combustion Zone

The secondary air helps combustion and maintain the temperature above 900°C for more than 2 seconds. This prevents Dioxin generation.

- Buper heater
- **1** Economizer
- Boiler Drum
- **1** Steam Turbine / Generator

1 Low Pressure Steam Condenser

The turbine exhaust steam is condensated and recirculated to the boiler.

1 Ammonia/Urea

If selective non catalytic reduction (SNCR) system is applicated, Ammonia water or urea water is injected into the Secondary Combustion zone to remove NOx.

Gas Cooler

For additional needs

- Slaked Lime / Activated Carbon Removes HCI, SOx, Heavy metals, and any remaining Dioxins
- **2)** Bag Filter
- 2 Ash Treatment
- Induced Draft Fan

- **24** Gas to Gas Heat Exchanger
- **25** Flue Gas Reheater
- **26** Ammonia Injection (de-NOx agent)
- Catalytic Reactor (de-NOx and de-Dioxins)
- 28 Stack

Klaipeda, Lithuania