Yec Yachiyo Engineering Co., Ltd.

https://www.yachiyo-eng.co.jp/

The Introductions of RIAD (River Image Analysis for Debris transport) — Applicability & Case Study in Brunei —

20th – 25th May, 2024

World Water Forum 10 @ BNDCC

YACHIYO Engineering

© YACHIYO Engineering Co., Ltd. All Rights Reserved.

1. Marine plastics issues

Problem of Marine Plastic Pollution

Source : United Nations "Plastic pollution choking world's oceans" (2018)

Source: OCEANS ASIA "MASKS ON THE BEACH" (2020)

1. Marine plastics issues

How to Reduce Marine Plastics?

Institutional and legal development

Use of alternatives to plastics

Collection of Plastics

Environmental Education and promotion

https://hirakata-kankyou.net/report/

Improvement of Waste management

1. Marine plastics issues

Edo River Noda Bridge Overflow caused by Typhoon No.9 (Sep.7.2007) Photo by Prof. Nihei Yasuo (Tokyo University of Science)

Plastics on riverside spills into river

1. Introduction

Imaging Video, Grasping Transport Amount of Natural/Human-made debris (RIAD : *River Image Analysis for Debris transport*) [Kataoka & Nihei (2020)]

Developped by Prof. Nihei (Tokyo Univ. of Science) & Assoc. prof. Kataoka (Ehime Univ.) Socielly implemented and Commericialized by Yachiyo Engineering Co., Ltd. (from Jul. 2021) Details on QR code blow

https://www.yachiyoeng.co.jp/government/pickup/RIAD/

RIAD Development system

Developer

Tokyo Univ. of Science Prof. Nihei Ehime Univ. Assoc. prof. Kataoka

- Develop automated way to identify riverine debris (River Image Analysis for Debris transport)
- Global technology publication (Journal, etc...)

Improve RIAD accuracy based on demand

Academia-Industry Cooperation &

Yachiyo Engineering Co., Ltd. Environmental Planning Dep. Consulting Headquarters

- RIAD systematization
- RIAD popularization, Societal implementation

Realizing user demand & societal implementation

Accelerate solving social issue on plastic

System

Water gauge

Camera 🚺

8

Case of Video Camera without Network

Riverine debris continuously extracted.

Natural (driftwood, leaf, etc.) & anthropogenic (plastics, empty can, etc.) debris generally well-categorized respectively.

11

3. What we can achieve by RIAD system

12

4. RIAD introduction case in Hamamatsu, Japan

13

Drainage canal

4. RIAD introduction case in Hamamatsu, Japan

Debris runoff situation

- Debris were observed to occur mainly during water outflows.
- RIAD was able to identify anthropogenic debris from the debris on the water

4. RIAD introduction case in Hamamatsu, Japan

Plans for future consideration

• Initiatives utilizing data linkage infrastructure, such as visualization of debris discharge status, etc.

*1:https://deps.mofe.gov.bn/SitePages/Population.aspx *2:https://deps.mofe.gov.bn/SiteAssets/Time-Series3.html Water Village

Population Density and Locations of Water Village

17

18

Present Condition

Cleaning activities are conducted almost every day (2018 \sim)

But still there are lots of debris under houses and on riversides

Water Area Cleaning

Land Area Cleaning

19

Taking Videos at 3 Points (Different Rivers) Every one hour

Taking Videos by Smartphone

Original

Difference

Captured Video

Analysis

Captured Plastics (during 30 minutes)

21

Examples of future RIAD utilization

RIAD System Visualization
+

Efficient implementation of measures (example)

- River debris scavenger machine
- Trapping, Oil fence
- CCTV to monitor illegal dumping
- Trash Box ... etc.

Example of Oil fence

Example of clean up machine Interceptor by The OCEAN CLRANUP

Monitor image of fully-equipped RIAD

Raising Environmental Awareness

@ Field

CONFIDENTIAL © YACHIYO Engineering Co., Ltd. All Rights Reserved.

https://theoceancleanup.com/dashboard/#interceptor002

6. Conclusion

Thank you for your attention

Appendix

Simple flow to grasp riverine debris transport amount with Camcorder

CONFIDENTIAL © YACHIYO Engineering Co., Ltd. All Rights Reserved.

River in Kinki Region : Overflow at Aug 21 2019

Transport amount of riverine debris on entire water surface per unit time [g/s]

■ Confirm *First Flash Phenomenon* caused by natural & anthropogenic debris ■ Find out relation b/w flow rate & debris transport amount

Appendix Field study requirements for mass flux

■ Acquire # of pixels per 1m & distance to water surface

•Setting up length per pixel beforehand for computing debris area with the system is necessary. As shown in a picture on right, extra imaging with something as a scale is required. At that time, measuring distance from a camcorder lens to water surface must be done.

•It can be expected that water level, or length per pixel changes during imaging. So, measuring distance from a camcorder to water surface at the imaging moment.

Acquire information on riverine width

•Implementing analysis in a certain area of imaged picture requires evaluation across entire riverine surface. So, measuring riverine width is necessary.

Acquire data on water level (flow rate) around imaging point

•Analysis above just produce result with temporary imaging duration. To take measures hereafter, estimating debris amount through a year is required. So, we need to acquire annual data on water level and flow rate.

Collect debris around imaging point (Optional)

•RIAD can compute natural or anthropogenic debris area. For this computation, we need to evaluate mass flux, in other words, evaluate Coefficient; $a[g/m^2]$ to convert Area; $A[m^2]$ into Mass; M[g]. So, it is required to collect debris around imaging point, acquire information on its area and mass, and then evaluate Coefficient; $a[g/m^2]$ with dividing Mass; M[g] by Area; $A[m^2]$.

